

Unsigned 8-Bit Discrete-Time Convolution
Alan Hsiao (ah668), Chloe Wu(jw995), Emily Wang(jw829), Grace Tan(gnt4)

 ECE 4740 Digital VLSI Design
Final Project Report

Table of Contents:

● Introduction

● Design Comparison

● Design Hierarchy

● Design Methodology

● Functionality

● Troubleshooting

● Comments

● Additional Figures

● References

 Introduction

Convolution is an essential technique employed in digital signal processing as it combines two
signals to form a third. It is an operation on two signals that produces a third signal described as
the integral of the product of the two functions after one is reversed and shifted. In discretized
time, convolution simply becomes a combination of multiplications and summations. We chose
to implement convolution for unsigned 8-bit integer inputs for two arrays with a length up to 3.
The resulting outputs are unsigned 16-bit integers in an array with a length up to 5.

Additionally, convolution is used for common everyday applications such as image or audio
processing, as well as Convolutional Neural Networks (CNN), a class of deep learning, which
uses convolution instead of matrix multiplication. One example is a Field Programmable Gate
Array (FPGA)-enabled binarized CNN toward real-time embedded object recognition systems
for service robots. In other words, these service robots use convolution for image recognition
using FPGAs. These robots must be able to move while recognizing objects and sounds
simultaneously, accurate information must be processed and delivered in real time so speed is
essential as well as accuracy. In this context, energy is an important factor as these robots are
battery operated and recognition demands a lot of energy (Yoshimoto et al.). Area is also an
important factor since these systems have an area constraint so that the robot can still be mobile.
Moreover, many other small devices, such as smart watches, must be able to process audio and
images and have limited area to do so.

Since the signals that are being convolved for practical applications of digital signal processing
are very large in size and must be processed in real time, speed must be prioritized. Linear
convolution in the time domain is slow because it has a computation time of ​N​1​N​2 ​multiplications
and additions where ​N​1 ​and ​N​2 are the lengths of arrays 1 and 2 respectively. Thus, many
algorithms have been developed to optimize computation, such as fast convolution. One example
is the radix-2 Fast Fourier Transform algorithm that an estimation in computational advantage

compared to direct convolution is where N is approximately the number of N2

3·2Nlog 2N + 2N 2

multiplications and additions (Babic et al.). This is much faster and reduces any computation
overhead as such algorithms are developed to ultimately improve execution speed because of
what convolution is used for.

With this in mind, we developed design goals that would meet such constraints by prioritizing
area and delay product, as well as accuracy. Area is important as it also relates to cost in addition
to what is already discussed, speed is essential with processing in real time, and accuracy is
preferred when computing convolutions. We also chose to prioritize power, but to a lesser degree
since obtaining computations quickly is our primary objective.

 Comparison

For the system design, we wanted to optimize the area delay product and power. We came up
with three different designs and compared them. The first design was an iterative decomposition
architecture (Figure 1). This design reused the same multiplier and adder blocks to perform one
set of multiplication and addition of the convolution at a time. Therefore, although it was very
area-efficient, it would take 9 clock cycles to compute one convolution, which was not
computation-efficient. Additionally, when it comes to testing, this design requires us to sample at
very specific clock cycles because the output is not necessarily the desired output at every clock
cycle. In other words, this design will output the first element of the output array at the first clock
cycle, but at the second clock cycle, the output is the partial product of A​2 and B​1​, which is not
our desired output. Therefore, this design will increase testing complexity.

Figure 1:​ Diagram of Iterative Decomposition Architecture Design

The second design that we came up with was parallel processing architecture (Figure 2). This
design implemented parallelism to compute the whole convolution in one clock cycle. Thus, it
was very computation-efficient. For testing this design, we can sample the output at every clock
cycle. However, this design requires 9 multipliers, 4 adders, and 5 flip flops in total, which takes
up too much area and will create more layout overhead. Additionally, it will also consume too
much power since there are more components.

Figure 2:​ Diagram of Parallel Processing Architecture Design

The third design we had was a modification of the replication architecture (Figure 3). This design
computed three multiplications at a time. On the first clock cycle, it would perform ​three
multiplications and ​one addition to get the first and second elements of the output array. On the
second clock cycle, it would perform three multiplications and two additions to get the third
element of the output array. Lastly, it would perform three multiplications and one more addition
to get the fourth and fifth elements of the output array at the third clock cycle. For testing this
design, we would need to sample specific flip flops (FF) on each clock cycle. In other words, we
will need to sample FF1 and FF3 for the first and third cycle and FF2 for the second clock cycle.

Figure 3​: Diagram of Modification of Replication Architecture

Using our existing designs for 16-bit carry implement adder and 1 bit FF, we estimated the
propagation delay, area, and power consumption for each design. We estimated our multiplier to
have an area of about twice that of the carry implement adder by examining each of their
respective components. The carry increment adder consists of 15 greycells, 9 blackcells, 32 XOR
gate for propagation and summing logic, and 16 AND gates for the generate logic. The carry
save multiplier consists of 8 half adders and 48 full adders. Since the greycells are similar to half
adders, and the XOR gate together with the blackcells are similar to the full adder, it makes sense
that the multiplier has twice as much area as the carry increment adder because the adder had 24
building blocks and the multiplier had 56 building blocks. As for the power consumption, since
the multiplier has 8 bits for input and 7 rows of ripple carry adders like an adder chain, we
estimated the power will be 3.5 times of the adder. The delay of the multiplier would then be
around the propagation delay of 15 blackcells.

We followed a similar approach to estimate the 16-bit FF and MUX. Since we have the area,
delay, and power of a 1-bit FF, we simply multiplied all those information by 16 to get the area,
delay, and power for the 16-bit FF. For the 16-bit Mux, we estimated that the area and the power
of the MUX would be slightly less than the FF since a 1-bit mux required 3 NAND gates and 1
inverter while a 1-bit FF required 4 transmission gates and 7 inverters . The propagation delay

for the FF would be slightly worse since the critical path of the FF was slightly longer than that
of the MUX. The table below summarizes all the results that we discussed above.

As mentioned in the introduction, we wanted to minimize both AT product and power since
convolution applications have restraints in area, execution speeds, and power consumption. Since
many algorithms focus on optimizing computation time, we prioritized in minimizing delay. We
equally prioritized minimizing area as greater area is more expensive and in embedded systems
where convolution is used, there is an area restraint. Power is another important factor, however,
we decided that power is not as important as area and delay when examining the performance of
computing convolutions. Thus, we weighted the normalized AT product and power by 80% and
20% respectively for each of the various designs for comparison.

Looking at the table below, one can see that the iterative decomposition architecture is the most
area and power efficient design, but the computation time is much longer for just one
convolution, which makes the whole design have the highest normalized AT product and power
factor. For the parallel architecture, it is very computation efficient since it only requires one
cycle to finish one convolution. However, the normalized AT product and power factor is large
due to its high cost of power and area, which would create more layout overhead. Therefore, the
second design is not our best solution. The third design has the lowest AT product and power
factor so it does not require too much power consumption nor area with minimized delay.
Therefore, we decided to go with our third design, the modification of replication architecture.

Table1:​ Comparison of Three Design Choices

 Design Hierarchy

In order to perform convolution, our system requires three major components: the 8-bit
multiplier, the 16-bit adder, and the 16-bit flip flop. Each component is then broken down into
elements such as cells and gates, and every component and element has its own schematic and
layout so that the design is modularized. We started by creating the lowest hierarchical elements,
the gates, and tested their individual functionalities in simulation before moving on to the next
hierarchy. For major components, such as the adder and the multiplier, we created separate
testbenches using veriloga and exhaustively checked their functionality. Additionally, in order to
minimize design errors, we performed schematic testing before we started doing layout. To
summarize, our hierarchical design approach and thorough testing process significantly increased
our efficiency by having solid, functional sub-elements building from the ground up. Figure 4
illustrates the architectural level block diagram from the convolution circuit down to the gate
level circuits.

Figure 4:​ System Hierarchy Block Diagram

Multiplier Design Hierarchy

Figure 5 below illustrates the hierarchy of the multiplier. The carry-save multiplier is made up of
48 1-bit full adders and 8 1-bit half adders. The inputs of the adders are calculated using partial
products, which are unit-sized AND gates. The multiplier performs 8-bit unsigned multiplication
with 16-bit precision as the output. Its functionality is verified using veriloga and Cadence
simulations.

Figure 5:​ Hierarchy of the 8-bits Carry Save Multiplier

Adder Design Hierarchy

Figure 6 illustrates the design hierarchy for the 16-bit carry increment adder. The adder generates
the G​i​<15:0> and P​i​<15:0> using the unit-sized AND and XOR gates, respectively, and the
Generate of each bit is fed into a black or grey cell, where its output is XOR’ed with the
Propagate of that bit to create the sum bit. Additionally, the 1st-bit sum requires additional logic
[G​0 + P​0 * C​in​] in order to account for the carry-in, adding an additional propagate and generate.
The functionality of the adder is verified using veriloga, Cadence simulations, and MATLAB.

Figure 6:​ Hierarchy of the 16-bits Carry Increment Adder

Flip Flop Design Hierarchy

The 16-bit flip flop is created from 16 1-bit flip flops that all share the same clock. The 1-bit flip
flop is composed of two latches so that the data is stored when the clock is high. It was first
thoroughly tested and verified using Cadence simulations. Then the 16-bit flip flop was created
and also checked for its functionality and performance through Cadence simulations.

Design Methodology

System Design

As we discussed in the design comparison section, our final design of the system utilizes a
modification of repetition architecture. It consists of a 3 8-bit carry save multipliers, 2 16-bits
carry increment adders, and 3 16-bits FF. It will calculate one convolution every three clock
cycles. This design has the most optimized normalized AT product and power factor.

We also noticed there are tradeoffs in prioritizing maximum inputs over accuracy as shown
through an example in the table below. If the highest unsigned 8-bit number is used for each
element in the input arrays for the convolution, some of the outputs are greater than 16 bits and
our adder only supports up to 16 bits. In this case, the least significant bits would be cut off and
accuracy is compromised. Since it is important to obtain correct results with precision for
convolution, we prioritized accuracy and decided that limiting the maximum input to 147 is
better than losing precision. We determined 147 as the highest input through the following
calculations. Since 1111111111111111 (65535) is the highest unsigned adder output we can get,
the highest unsigned multiplier input we can have is (65353/3)​.5 =147.8 so 147 is the highest
multiplier input we can have.

Table 2: ​Comparison of prioritizing maximum input versus accuracy

Adder Design

In order to perform 16-bit addition, we first compared the different types of adders and compared
their Area-Delay products (Table 3). While Sklansky has the smallest AT product, the circuit is

not wiring-friendly and has too much overhead for our purpose. Additionally, Sklansky also has
high power consumption due to its design complexity. Thus, we chose the carry increment adder
because we want to optimize the AT product, power, and wiring.

Table 3:​ Comparing the area, delay and AT product of different types of adders.

Adder Sizing

Figure 7 below illustrates the block diagram of the carry increment adder as well as its two
critical paths. Since the blocks are parallelized in groups of three (i.e. bits 1-3, 5-7, 9-11, and
13-15), we decided to size the critical path in purple, bits 5 to 14, and sized the parallel branches
similarly. The purple path is made of 27 stages and is comparable to the blue critical path
because the black cells on bits 5, 6, and 7 each have to drive an additional NAND for its group
propagate. The cells that are not on the critical paths are all unit-sized in order to minimize the
area. The sizing of the cells and the gates are shown in Figure 8.

For this adder, we sized the critical path at the gate level and optimized its delay by placing each
cell around the critical path. By doing full gate-level sizing, we spent about 10x more time doing
layout than we would need if we just optimize one cell and use it for the entire design. Even
though gate-level sizing was efficient for critical path delay, it was not ideal in terms of layout
time.

Figure 7:​ Block diagram of the carry increment adder with its 2 critical paths.

 Figure 8:​ Carry-increment adder gate-level sizing

Multiplier Design

Another major design decision we made was the 8-bit multiplier. We first compared the three
types of multipliers we learned in class: the array multiplier, carry-save multiplier, and the
Wallace tree multiplier. Since the computation only takes 8-bit inputs, we decided that the
Wallace tree multiplier has too much layout overhead and complexity for our convolution.
Comparing the array multiplier and the carry-save multiplier, the array multiplier has a longer
critical path than the carry-save due to the nature of its zig-zagging carry-out paths. As a result,
we chose the 8-bit carry-save multiplier for our convolution, as shown in the following figure.

Figure 9:​ Block diagram of the 8-bit carry save multiplier

Multiplier Sizing

The carry-save multiplier has both full adders and half adders as its sub-blocks. In order to
optimize both the work efficiency and component delay, we sized the individual sub-blocks and
used the same block throughout the entire design. For the 1-bit full adder (Figure 10), the two
paths that need to be sized are the carry path (1 AND and 1 OR gate) and the sum path (2 XOR
gates). For the half adder, both the XOR and AND gates are sized 1 because they are the only
component on the path. The block-level size calculation is shown in figure 11.

Figure 10: ​Block diagram showing sub-block components of the carry-save multiplier with the full adder on the left
and the half adder on the right.

Figure 11:​ Carry Save Multiplier Block-level Sizing

Gate Level Design

During our project, we tried out two types of design methods: the adder using gate-level sizing
and the multiplier using block-level/system-level sizing. For gate-level sizing, we broke down
the critical path into NOR, NAND, INV, and XOR gates and sized all 28 stages of the adder’s
critical path (Figure 11). The gate-level sizing involves more complexity because the black and
grey cells are not modularized throughout the design and each cell must be designed and laid out
separately. For block-level/system-level sizing, we were able to optimize delay and layout by
sizing one block and reusing it throughout the design with an expected propagation delay (Figure
11). In this case, the gate-level design for sub-blocks occurs once, whereas for full gate-level
sizing, all cells must go through a different gate-level design.

XOR Gate Design

We had two designs for the XOR. One used transmission gate logic to reduce area, and the other
used inverting logic to prevent potential drop in output voltage. The figure below shows the two
XOR gate designs. Based on our critical path calculation for both the adder and the multiplier,
the XOR gate is unit size. As for the transistor level sizing, we sized the pmos and nmos 2 to 1 in
the inverting logic XOR design so that we have equivalent rise and fall time for the propagation
delay. We sized the XOR gate with transmission logic with 2 to 1 pmos to nmos ratio for the
same reason. For the transmission gate, we sized the pmos to nmos ratio 1 to 1 since only one
gate will be on at a time.

One advantage of using transmission gate logic is that it saves area. However, since transmission
gate logic does not have the regenerative properties, there will be a V​T drop at the output if using
the nmos as a pullup or pmos as a pulldown. In contrast, inverting logic has the regenerative
properties that restore the output back to its normal level but it also requires 6 more transistors,
which increases our area. In our 16-bit adder design, we used the transmission gate logic XOR
gate since the XOR gate is only used for propagate and summing logics. So there is no
transmission gate cascaded together to cause significant voltage drop. However, the transmission
gate logic will cause problems in the multiplier since we have a path going diagonally down
through the full adder. We will talk more about this problem in detail in the troubleshooting
section.

Figure 12:​ XOR gate with Inverting Logic (Left) and Transmission Gate Logic (Right)

 Functionality

Testing Strategies

After conducting a trade study on the different topologies and choosing a final design, our next
goal was to create a signal generator module, schematic, and MATLAB test script to verify that
our design produced the correct output. Since we heavily relied on test-driven development to
guide our design choices, simulations were run to ensure correct implementation of
subcomponents before moving on to test higher levels of the hierarchy. At the gate and
subcomponent level (full adder, half adder, group generate, group propagate), we implemented
exhaustive testing to ensure that each gate and subcomponent implemented the correct logic
function for all sets of possible inputs. This testing strategy allowed us to quickly locate issues at
the component level (8-bit multiplier, 16-bit adder, 16-bit FF) as a result of schematic designs
while having full confidence that the subcomponents were implemented correctly.

Since there are over 4-billion possible permutations for components that have two 16-bit inputs,
exhaustively evaluating our designs at a component level is not reasonable. Therefore, we
implemented carefully crafted directed tests which consisted of fault isolating unit tests (such as
adding all 0s) to uncover as many faults as possible. To increase our confidence in the
correctness of our design, we then extend to running random tests that cover different patterns
and parameters. Lastly, when our components have run successful directed and random tests, we
reiterate the testing process for the full convolution circuit. Our directed tests for the full
convolution circuit utilized our minimum and maximum values (0 to 147) while random tests
were generated with an online random number generator.

MATLAB and Verilog

To ensure that our final convolution calculates the correct values, we wrote an extensive
MATLAB script to sample the Cadence simulation inputs and outputs, calculate the expected
convolution using the inputs, and then compare the binary values of the expected result with the
obtained result. As shown in the ​Correct Convolution Output screenshot (Figure 14), the script
will state that the convolution has no errors when no error flags are thrown in the comparison
code. Meanwhile, the Cadence simulation inputs are provided by our Verilog code which breaks
down each array into three 8-bit inputs. Originally, we wanted to run multiple convolutions per
each simulation, but quickly realized that it would be inefficient due to the long simulation times
(+20 minutes). Therefore, though our code for both MATLAB and Verilog contain remnants of
our past design thoughts, it only runs one convolution case at a time.

Figure 13:​ Expected Convolution Calculation [MATLAB]

Figure 14:​ Correct Convolution Output [MATLAB]

Figure 15:​ Incorrect Convolution Output [MATLAB]

Figure 16:​ Lab 5 Signal Generator [Verilog]

LVS and DRC

After the schematic has successfully passed all of our verification tests, we need to do layout to
get a more reasonable estimate of the area, delay, and power consumption of our circuit. While
some subcomponents had been finished in previous labs, we needed to tweak some designs and
start from scratch for others. We were able to successfully pass DRC and LVS on the final layout
and run Quartus QRC to extract parasitics.

Performance

We evaluated the performance of our convolution based on the FoM as defined in our design
comparison section. To reiterate, since many convolution modules are utilized in embedded
system applications which oftentime have area, delay, and power constraints, we decided that
optimizing area, delay, and power would be most beneficial. However, due to real time
constraints for signal processing systems such as in autonomous car applications (where time
constraints result in life or death), we weighted the area delay product at 0.8 and the power at 0.2
of the total area-delay-power constraint.

In terms of area, the full layout can be contained within a 146µm by 149µm rectangle which
equates to about 21,000µm​2​. However, if we take into account that there is excess space in the
top right corner as well as the bottom to fit additional components, we can estimate an area of
about 17,500um​2 which is only 11% bigger than our estimated value of 15,500µm​2 (which did
not account for routing).

To measure delay, we ran several simulations for individually extracted components to get an
idea for best and worst case delay times. We were also able to run one random simulation (which
passed) on the full av_extracted version of the convolution circuit. If we had additional time, we
would run more test cases on the full av_extracted convolution circuit, but since one simulation
took about 45 minutes to run with nestlvl=1, we decided to prioritize optimizing other aspects of
our design over spending large amounts of time to ensure that layout outputs matched an already
correct schematic output. In the end, we estimate that the max clock period for our flip-flops will
be about 8.5ns which leads to a convolution period of 25.5ns or a max convolution frequency of
39.2 MHz. Compared to our estimate of 22ns (max convolution frequency of 45.45 MHz), we
only have 13.7% error. In order to ensure correct sampling of the inputs and outputs, our veriloga
and MATLAB scripts are set to the upper bound of clocking the flip-flops at 20ns with a
convolution period of 60ns (max convolution frequency of 16.67 MHz). We made this decision
mainly based on the uncertainty in delay for the full av_extracted convolution circuit (which
could not be exhaustively tested).

For power on the generic full av_extracted convolution test case, we were able to convolve two
arrays with 0.3365 mW. Since we used the worst case power consumption for each component in
our area-delay-product calculation, we obtained a much higher value of 2.58 mW. However, this
power consumption is physically impossible to obtain because the multiplier feeds into the adder
and the worst case output for the multiplier is not the worst case input for the adder.
Additionally, since the power obtained for the full av_extracted convolution is for a generic
convolution, we expect the power to increase for worst case scenarios and decrease for best case
scenarios.

 Troubleshooting

Problem with XOR Gate

As we were testing our convolution circuit, it failed for the case where the two inputs to the
multiplier were 10000010 and 00010100 respectively. The 9th bit of our output was supposed to
be a 1 while the Cadence simulation of our circuit gave a 0. As we took a deeper look into our
circuit, we found out that there was a problem with the XOR gate with transmission gate logic.
In our carry save multiplier design, the sum of a full adder fed into the input of the next stage full
adder. The sum path of the full adder goes through two XOR gates. Therefore, there was a
cascaded V​T drop going diagonally along the multiplier, which could drop an input signal of 1
down to 0. The figure below shows the Cadence simulation with the cascaded V​T​ drop.

Figure 17:​ Cadence Waveform Showing ​cascaded V​T​ drop

To fix this problem, we came up with two solutions. One is to change all our XOR gates in the
full adder to use inverting logic instead of transmission gate logic (as we talked about in the
XOR gate design section) because inverting logic has the regenerative properties that would
restore our output to its normal level. The other solution is to add a buffer after each sum path so
that the buffer could pull the output up after the transmission gate.

We decided to change our design of the XOR gate to the one with inverting logic and ran
Cadence simulation to prove that the XOR gate was indeed the problem. The figure below shows
the Cadence simulation of the multiplier with inverting logic XOR gate design. And one can see
that there is no more voltage drop along the full adder chain. We found out this problem after we
finished our multiplier layout. Therefore, changing the XOR gate logic would require us to redo
the layout, which was not possible given the time we have left. Therefore, our final layout of the
multiplier still used the XOR gate with transmission gate logic, which would fail one of the test
cases we had. If we had more time, we would have laid out the multiplier with the inverting logic
XOR gate.

Figure 18:​ Cadence Waveform with Inverting Logic XOR Gate

Another possible solution that we did not implement is to use a keeper circuit at the output of the
XOR gate. The keeper circuit will help retain the output at high. But using the keeper circuit will
require ratio’d logic. We need to make sure that the keeper is weak so that it will not pull the
output to high when it is supposed to be low.

Problem with 16-bits Carry Increment Adder

We also had issues with our 16-bits carry increment adder. It did not pass all the test cases that
we have created. As we were checking the sum and carry out of each bit, we found out that the
group generate logic for the 0th bit was not correct. In our adder design, the group generate,
which is the carry out from the previous bit will feed into the generate of the black/grey cells.
Originally, we had the generate signal of 0th bit feeding directly to the generate of the first grey
cell, but it should have been the carry out of the 0th bit. We re-ran the Cadence simulation to test
our adder after we changed the group generate logic to the carry out logic, and it passed all the
test cases. We then tested more random cases and the outputs were all correct.

Glitches

We also had problems with glitches from the adder and the multiplier due to the change in
inputs. We sized our adder and multiplier for minimum propagation delay, but it improved the
glitches very slightly. The glitches increased our propagation delay, and we needed to sample our
output at a later time to get the correct outputs.

Comments

Thank you so much for a great semester! We really appreciate your patience and the time you all
have dedicated to helping us with learning the material and figuring out why Cadence is weird
and annoying sometimes. Hope to see you all on campus again soon :)

Course Staff Contributions

Robin Ying ● “Do you see the wiggle?”
● Flip flops (FF) 4 days (except when snowing)
● Best Personal Tutor Award (in OH)

Thomas Tapen ● Inverted Zoom Drawings
● Cadence Wizard
● Best Lab TA Award

Alec Newport ● Best MEng TA Award
● Synopsys + Innovus Whisperer
● Homework Auto-(route)grader

Additional Figures

Figure 19:​ Schematic of the 8-bit Carry Save Multiplier

Figure 20:​ Layout of the 8-bit Carry Save Multiplier

Figure 21:​ Schematic of the 16-bits Carry Increment Adder

Figure 22:​ Layout of the 16-bits Carry Increment Adder

Figure 23:​ Schematic of the 1-bit Flip Flop

Figure 24:​ Layout of the 16-bits Flip Flop

Figure 25:​ Layout of the Convolution System

 References

Babic, Z., & Mandic, D. (2001). A fast algorithm for linear convolution of discrete time signals. 5th
International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service.
TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517). doi:10.1109/telsks.2001.955846

Yoshimoto, Y., Shuto, D., & Tamukoh, H. (2019). FPGA-enabled Binarized Convolutional Neural Networks
toward Real-time Embedded Object Recognition System for Service Robots. 2019 IEEE International
Circuits and Systems Symposium (ICSyS). doi:10.1109/icsys47076.2019.8982469

